vngogl.blogg.se

Preuve hyperplan dimension
Preuve hyperplan dimension





preuve hyperplan dimension

Murre, J.P.: Applications of algebraic \(K\)-theory to the theory of algebraic cycles. Murre, J.P.: Un résultat en théorie des cycles algébriques de codimension deux. Merkurjev, A.S., Suslin, A.A.: Norm residue homomorphism of degree three. Merkurjev, A.S., Suslin, A.A.: \(K\)-cohomology of Severi-Brauer varieties and the norm residue homomorphism. Mboro, R.: Remarks on the \(CH_2\) of cubic hypersurfaces. Laterveer, R.: Algebraic varieties with small Chow groups. Kollár, J., Miyaoka, Y., Mori, S.: Rational connectedness and boundedness of Fano manifolds. Kahn, B., Sujatha, R.: Unramified cohomology of quadrics. Kahn, B., Rost, M., Sujatha, R.: Unramified cohomology of quadrics.

#PREUVE HYPERPLAN DIMENSION SERIES#

A Series of Modern Surveys in Mathematics), 2nd edn. A Series of Modern Surveys in Mathematics (Results in Mathematics and Related Areas. 161(5), 735–801 (2012)įulton, W.: Intersection theory, vol. 2 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 97(1), 141–158 (1989)Ĭolliot-Théléne, J.-L., Voisin, C.: Cohomologie non ramifiée et conjecture de Hodge entière. Merkurjev’s sixtieth birthday)Ĭolliot-Théléne, J.-L., Ojanguren, M.: Variétés unirationnelles non rationnelles: au-delà de l’exemple d’Artin et Mumford. American Mathematical Society, Providence, RI (1995)Ĭolliot-Thélène, J.-L.: Descente galoisienne sur le second groupe de Chow: mise au point et applications. In: \(K\)-Theory and Algebraic Geometry: Connections with Quadratic Forms and Division Algebras (Santa Barbara, CA, 1992), Proceedings of Symposia in Pure Mathematics, vol. 58, pp. 122(1), 43–55 (1986)Ĭolliot-Thélène, J.-L.: Birational invariants, purity and the Gersten conjecture. (4) 7, 181–201 (1975)īloch, S., Srinivas, V.: Remarks on correspondences and algebraic cycles. Cambridge University Press, Cambridge (2010)īloch, S., Ogus, A.: Gersten’s conjecture and the homology of schemes. Springer, Berlin (2003)īloch, S.: Lectures on Algebraic Cycles, New Mathematical Monographs, vol. In: Higher Dimensional Varieties and Rational Points (Budapest, 2001), vol.

preuve hyperplan dimension

Société Mathématique de France, Paris (2004)Īndreotti, A., Frankel, T.: The Lefschetz theorem on hyperplane sections. Panoramas et Synthèses (Panoramas and Syntheses), vol. André, Y.: Une Introduction Aux Motifs (Motifs Purs, Motifs Mixtes, périodes).







Preuve hyperplan dimension